

Aveiro, 2025 21 e 22 de outubro

SOLUÇÕES DE ISOLAMENTO TÉRMICO SUSTENTAVEIS

11111

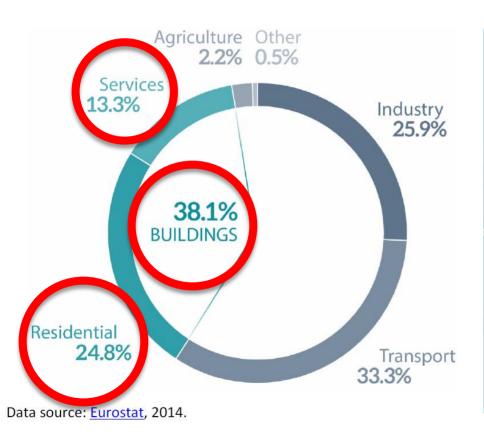
10.452

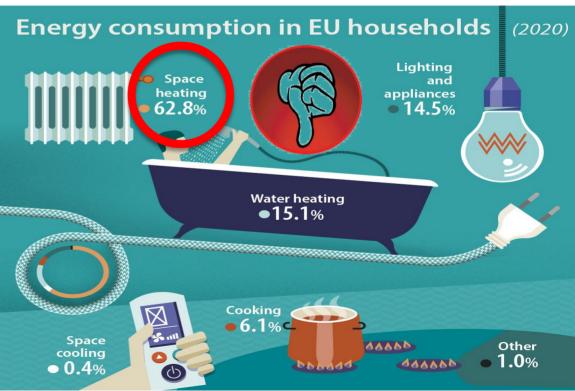
COLABORADORES

EM TODO O MUNDO

ISOLAMENTO TÉRMICO no Grupo SOPREMA

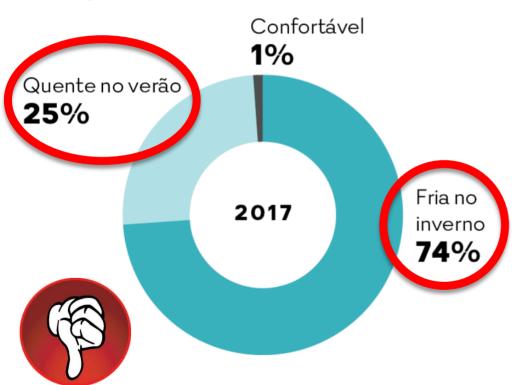
Poliestireno Expandido




SOLUÇÕES DE ISOLAMENTO TÉRMICO SUSTENTAVEIS

ENQUADRAMENTO - SITUAÇÃO NA EUROPA

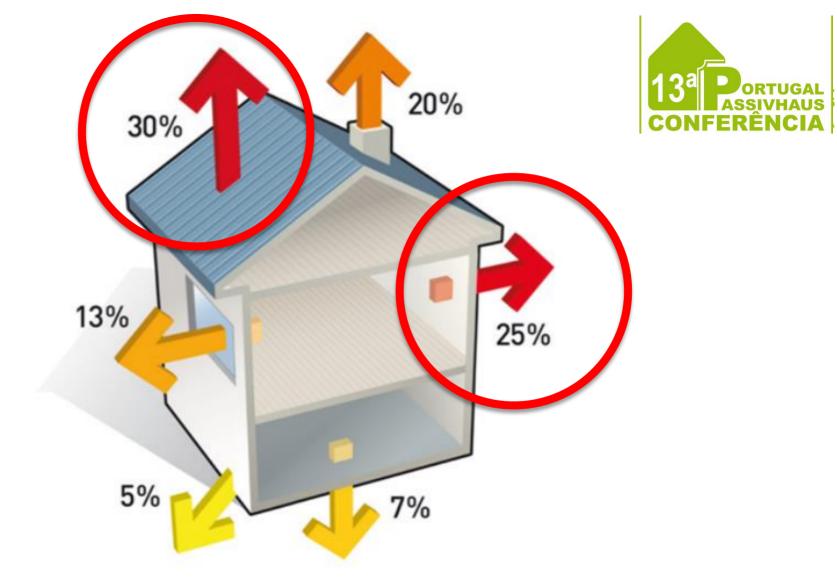
Distribuição do consumo de ENERGIA por sectores na EU



ENQUADRAMENTO - SITUAÇÃO EM PORTUGAL

CONFORTO TÉRMICO NAS CASAS PORTUGUESAS

Em percentagem


Casas com humidade e fraco isolamento: retrato da habitação em Portugal

Humidade, infiltrações e fraco isolamento térmico são problemas que afetam a maioria das casas construídas em Portugal, sobretudo os edifícios das décadas de 60 e 70.

Geladas no inverno e quentes no verão. Na energia, casas portuguesas são das mais pobres da Europa

Portugal é o quarto país europeu com o maior nível de pobreza energética. A conclusão é apontada no primeiro estudo à escala europeia sobre o problema, realizado pela consultora Open Exp.

CAUSAS

CONSEQUÊNCIAS

DETERIORAÇÃO DOS ESPAÇOS E ELEMENTOS CONTRUTIVOS

THERE IS AN INCREASE OF URBAN TEMPERATURES

29°c

FARMLAND

RURAL

30-31°c

SUBURBAN RESIDENTAL 33°c

DOWNTOWN URBAN 31-32°c

COMMERCIAL

30°c

PARKS

Aumento do consumo de energia para aquecimento e arrefecimento

Aumento da concentração de poluentes como o ozono troposférico e os VOC

Aumento de emissões de CO2 para a atmosfera

Deterioração do conforto térmico interior

Agravamento das condições de saúde e aume<mark>nto da mortalidade</mark>

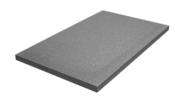
ISOLAMENTO TÉRMICO em PORTUGAL SOPREMA

FF	IGI	RΕ	F١	J
				М.

EFYOS PU B

SOPRA XPS

STIRODACH


SOPRA EPS NEO 100

Característica	EFIGREEN	EFYOS PU B	SOPRA XPS	STIRODACH	SOPRA EPS NEO 100
Condutibilidade térmica, l	0.022 W/m.K	0.025 W/m.K	0.032 W/m.K	0.033 W/m.K	0.031 W/m.K
Resistência à compressão	150 a 200 kPa	150 kPa	250 a 700 kPa	300 kPa	90 kPa
Absorção de Água Curto Prazo	<u><</u> 0.2 %	≤ 0.2 %	<u><</u> 0.7%	<u><</u> 0.7%	

A utilização de materiais de **isolamento PAVATEX contribui** de diferentes formas para a **proteção climática**.

Os painéis de fibras de madeira para isolamento PAVATEX são fabricados a partir da matéria-prima renovável o que contribui para a redução de CO₂, uma vez que a madeira é um reservatório natural de CO₂ e as fibras da madeira contêm muito carbono que foi retido da atmosfera à medida que as árvores cresceram e se converteram em madeira. O carbono armazenado desta forma é retirado do ciclo global e melhora assim o equilíbrio global de CO₂.

O isolamento térmico reduz o consumo de energia nos edifícios através da sua proteção contra o frio e o calor. Isto permite poupar nos custos com aquecimento e conservar o fornecimento de combustíveis fósseis, como o petróleo, o gás ou o carvão, reduzindo dessa maneira as emissões de CO₂.

Utilizamos apenas madeira proveniente de florestas locais e sustentáveis isentas de substâncias nocivas.

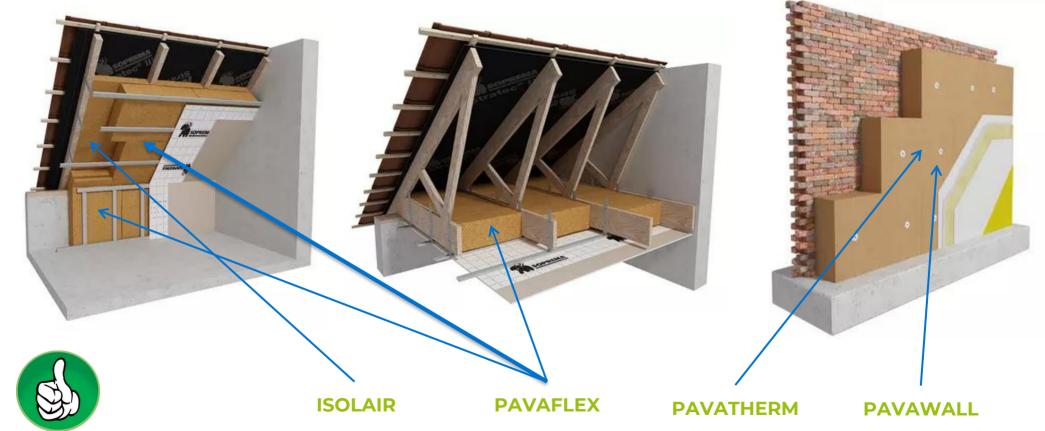
Grande permeabilidade ao vapor, permitem compartimentos saudáveis e agradáveis, bem como construções seguras.

No final da sua vida útil, os materiais isolantes de fibra de madeira podem ser compostados ou reutilizados para outras aplicações.

ISOLAIR

PAVAWALL

PAVATHERM



	ESTRUTURAL	ISOL. EXTERIOR	ISOL. EXTERIOR	ISOL. INTERIOR
Densidade	200 kg/m ³	130 kg/m ³	115 kg/m ³	60 kg/m ³
Resistência à compressão	200 kPa	70 kPa	50 kPa	- kPa
Condutibilidade térmica, l	0.044 W/m.K	0.040 W/m.K	0.038 W/m.K	0.036 W/m.K
Característica	ISOLAIR	PAVAWALL	PAVATHERM	PAVAFLEX

Devido ao chamado efeito de carbonização, as placas de fibra de madeira PAVATEX permanecem intactas durante mais tempo em comparação com os materiais de isolamento convencionais e impedem assim o fornecimento de oxigénio, o que impede a rápida propagação do fogo.

Numa emergência, estes são minutos valiosos que podem salvar vidas. Além disso, as placas isolantes de fibra de madeira PAVATEX não emitem emissões significativas prejudiciais à saúde em caso de incêndio.

Quando exposta ao calor, a madeira ou os seus derivados, apresenta um comportamento mais estável ao efeito de temperatura.

Ainda que apresente coeficientes de condutibilidade térmica menos eficientes, a estabilidade estrutural deste material quando exposto a elementos emissores de temperatura demonstra-se com um excelente desempenho.

Neste exemplo, colocamos um sensor entre 2 Layers de Material.

SOLUÇÕES DE ISOLAMENTO TÉRMICO SUSTENTAVEIS

ETICS | ADESIVOS | REBOCOS - DE BASE CAL

Otorga puntos:

/ERDE

SOPREMA PAVAWALL + TERM (ETICS)=

CASOS PRÁTICOS

pavatex

Construído em 1609 com uma técnica construtiva apelidada de enxaimel, o edifício com função mista residencial e comercial da família Engel em Wilferdingen, perto de Karlsruhe, possui mais de 400 anos de história.

Apesar de ser um bom exemplo da longevidade de uma construção de madeira, a cobertura do edifício não tinha qualquer tipo de isolamento térmico e por isso tornava-se demasiado desconfortável, com consumos de energia incomportáveis para a família que nele habita. As perdas térmicas pela cobertura podem chegar aos 30%, da energia despendida no aquecimento pelo que era urgente esta intervenção.

Adotou-se uma solução de **isolamento térmico** composta por **várias camadas** de painéis de fibras de madeira da **PAVATEX para renovação de telhados**, tendo-se adotado o painel isolante **PAVAFLEX** de fibra de madeira flexível para **isolamento entre vigas**, sobre esta camada foi aplicada uma camada de , a **membrana impermeável LDB 0,02** e placas de fibra de madeira **PAVATHERM PLUS como acabamento superior**. Com esta composição de cobertura conseguiu **obter-se um valor U da cobertura de cerca de 0,177 W/m²K.**

Edifício de habitação coletiva com 42 fogos, construído nos anos 70, onde se pretende requalificar energeticamente a envolvente exterior, com vista a dividir por 10 os custos energéticos dos inquilinos com a utilização de recursos locais e de origem biológica.

Optou-se pela implementação de sistema de isolamento térmico exterior aplicado sobre um fachada em madeira que envolveu o edifício, preenchido com 7.600 m² de PAVATEX® CONFORT instalados na fachada em 2 camadas de 100 mm e posteriormente revestidos com painel PAVAWALL® GF XL sobre o qual se aplicou o revestimento com barramento armado e acabado com painéis fenólicos.

ESTRUTURA PARA RECEBER O ISOLAMENTO TÉRMICO PELO EXTERIOR

PREENCHIMENTO PAVATEX® CONFORT MEDIANTE 2 CAMADAS DE 100MM

PREENCHIMENTO PAVATEX® CONFORT MEDIANTE 2 CAMADAS DE 100MM

REVESTIMENTO CONTÍNUO PAVAWALL® GF XL COM BARRAMENTO ARMADO.

NO ISOLAR É QUE ESTÁ O GANHO!!!

Questões???

Obrigado pela Vossa atenção

DEPARTAMENTO TÉCNICO

ARQ. PEDRO LAGOS

plagos@soprema.pt

+351 963 809 062